Ubiquitination: The glass ceiling of T4 monotherapy

UBIQUITINATION: This is the “Glass ceiling” of T4 monotherapy — in some patients, there is a biological limit on how much T3 they can get out of treatment with T4 thyroid hormone alone (Synthroid, levothyroxine).



Scientists currently theorize that at normal levels, the enzyme responsible for the majority of our body’s T4-T3 conversion is Deiodinase Type 2 (D2).

The problem is that D2 is an unstable enzyme. It is capable of being inactivated (transformed into “ubiquitin”) in the presence of T4 hormone.

This is a biological “failsafe” that is meant to protect our body from perceived T4 excess.

The T4-processing office worker

You can imagine that D2 is like an office worker, busy at his desk processing T4 paperwork into T3 paperwork. Then a bunch of people bring boxes of extra T4 into his office.

D2 gets discouraged. Overloaded. He takes more coffee breaks. He becomes ubiquitinated (progressively inactivated).

As T4 levels get higher and higher, even in reference range, a lower and lower percentage of that T4 will become T3 when it lands on Mr. D2’s desk.

Now the metabolism of T4 has to depend more on D1, the other enzyme that converts thyroid T4 hormones into T3. Where is most of your D1? your thyroid, then your liver, then your kidney.

If D1 is weak too, you don’t get much help. Your Free T3 levels drop.

If you continue to dose T4 at the same level, excess T4 will continue to inactivate D2 even in situations where there’s not enough Free T3 getting into cells.

Imbalance as a result of T4 dominance

You simply can’t FORCE the body to convert more T4 into T3 by increasing the T4 dose, or it will backfire and you will paradoxically get less T3 out of it — because of ubiquitination of the D2 enzyme.

Therefore, when Free T3 levels are low and Free T4 is higher, this imbalance can result in a T3 deficiency in brain, bones, joints… true tissue hypothyroidism.

Scientists understand “ubiquitination” as one of the major biological reasons why T4 monotherapy results in symptoms for so many patients.

It creates an unnaturaly low T3:T4 ratio — a higher Free T4, nurtured by continual T4 dosing, results in a simultaneously lower Free T3 in bloodstream at the same TSH when compared with healthy controls. (1)

Can we measure D2 activity? Yes, indirectly.

D2 does its job of conversion secretly within cells, where blood tests can’t measure it. Some doctors think that means D2 activity is unmeasurable.

Not true. Its effects are indirectly measurable.

Fortunately, every cell that converts T4 into T3 hormone also transports a lot of that T3 back into bloodstream where it CAN be measured.

Transport is 2-way: we transport hormones into cells, and we transport hormones out of cells. That’s the only way T3 appears in blood in people who get 100% of their T3 from T4 medication.

In patients maintained on T4 who don’t have a thyroid secreting T3, the Free T3:T4 ratio in blood is a good measure of the efficiency of both D1 and D2 combined, everywhere in their body.

We are not all statistically average.

Doctors like to proclaim that “80% of your T3 supply gets produced beyond the bloodstream and only 20% is secreted from your thyroid.”

Wait a minute. Whose thyroid are you talking about, Bob’s or Susan’s?

Check your facts. This is an average that is not representative of the diverse data set from 14 people in Pilo’s 1990 classic study.

This is the study where the 80/20 average comes from.

The average estimate of 80% assumes you are a statistically average person with normal thyroid physiology. What if you’re subject #3?

We now know better.

How TSH boosts T4-T3 conversion in the healthy thyroid via D1 and D2

The human thyroid gland expresses most of our body’s D1 enzymes, and a lot of our D2 enzymes (see Tissue RNA expression of DIO1, DIO2, and DIO3).

TSH stimulates more than just T4 and T3 synthesis. TSH also enhances the rate of T4-T3 conversion in the thyroid gland, so that as TSH rises, you get more T3 out of the thyroid. As TSH-containing blood flows through our thyroid, it gets into D2 and D3-expressing cells, where a lot of our T4 gets converted to T3.

Even in an individual human being, there is no such thing as a static T4-T3 conversion rate because TSH fluctuates.

Every day the thyroid hormone axis is in a continual state of flux. TSH rises and falls in a circadian rhythm, and the large TSH wave mainly causes a T3 rhythrm, not a T4 rhythm. Most healthy-thyroid people get to take a “dose” of T3 every night. (See graphs and an explanation of the science in Circadian rhythms of TSH, Free T4 and Free T3 in thyroid health )

In normal thyroid physiology, your TSH and thyroid gland cooperate to fine tune your bloodstream’s T4 and T3 supply so that a proper ratio and amount gets into cells. When T4-T3 conversion fall short outside the thyroid and T3 levels are at risk of falling low, the TSH-regulated healthy thyroid steps up to maintain the ideal T3 level and T3:T4 ratio for our individual body. (See a review of the science on thyroidal compensation: Thyroid T3 secretion compensates for T4-T3 conversion.)

The thyroid gland’s secretion rate and ratio (supply) vs. the ratio of T4 and T3 in bloodstream (metabolism + supply) will change under higher and lower TSH stimulation in thyroid-healthy patients. It changes in untreated hyperthyroidism, and in untreated hypothyroidism.


If you take away healthy thyroid tissue, you take away its D2 (and its D1), and its TSH-guided potential to boost T3 secretion.

That causes D2 (and D1) enzyme loss.

That causes TSH to lose thyroid-mediated regulatory control over T3 levels.

Things change further once you add T4 monotherapy, which supplies an unnatural 0:100 ratio of T3 to T4.

People on LT4 monotherapy carry an unnecessarily high FT4 supply (65-90% of reference range) compared to healthy thyroid people (average around 30-40% of reference range). (4)

That dominant T4 level causes a higher rate of D2 inactivation via ubiquitination.

D2 enzyme loss + D2 ubiquitination = lower T3:T4 ratio in blood

Unfortunately, the loss and of “UBIQUITINATION” of D2 means that a large percentage of hypothyroid patients on the standard T4 therapy will live the rest of their lives with lower Free T3 levels in bloodstream, which is a more serious problem than most doctors realize, and likely the cause of ongoing hypothyroid symptoms. (3) (4)

The health problem with this T3 “glass ceiling” is that some of us have bodies that require a Free T3 near the top of the reference range to maintain healthy T3 tissue supply and symptom relief. This is partly due to genetic differences in thyroid hormone transport, Deiodinase Type 2 genes, and/or reduced thyroid receptor sensitivity.(5)

Because of human biological variation in the strength of our D1 and D2 enzymes, some patients are very poor converters of T4 hormone.

Some of us will NEVER be able to use LT4 alone to bring their serum Free T3 levels up to the level of the average healthy human being, much less achieve their own potentially higher Free T3:T4 ratio set point.

In LT4 monotherapy studies in people without thyroids, most patients are freed from hypothyroid symptoms as FT3 rises past the midpoint. But a certain percentage can’t achieve that FT3 midpoint, even as you escalate T4 dosage and lower TSH below reference range.

At the point of complete TSH suppression, in people with no thyroid, the diversity of FT3 levels is huge, with some people having a very low T3 and a few having excess T3. (4)

How the TSH can be T3-blind in T4 therapy

Merely obtaining a “normalized TSH” is not going to magically squeeze enough T3 out of your static T4 dose.

This is because of the loss of the “feed-forward” role of TSH. It no longer regulates a thyroid’s T3 and T4 secretion rate and ratio. It no longer boosts the thyroid’s T4-T3 conversion rate via D1 and D2.

Doctors have been overly enthusiastic about the fact that as T4 levels rises, the TSH’s response to thyroid horomone negative feedback is still there.

To patients, having a “normal” TSH negative feedback loop without a “normal” TSH feedforward loop can be a curse.

If you use only “normal” TSH to guide therapy, the negative feedback at the pituitary pays attention to the dominant hormone in circulation and ignores the relatively depleted hormone.

TSH may be normal but the T3:T4 ratio is abnormal. TSH does not express the ratio, only its local rate of T4-T3 conversion plus blood T3 supply to its own tissues. TSH is blinded to the loss of T3 in people on T4 monotherapy. (See the science in The TSH-T3 disjoint in thyroid therapy )

As a result of T4 dominance in blood, TSH cannot rise to signal T3 depletion!


What can you do if you’ve hit the glass ceiling of T4 monotherapy and can’t raise your FT3 to eliminate symptoms? Rebalance your FT3:FT4 ratio by rebalancing your T3:T4 dosing ratio.

TSH-stimulated thyroid secretion is no longer driving your thyroid hormone health. Instead, strategic dosing partners with deiodinases.

What a real thyroid gland does as it customizes its T3:T4 secretion ratio to the individual, so customize.

Combine both T4 and T3 in therapy (either via synthetic combo or by desiccated thyroid NDT, or by a combination of both synthetic and animal-derived). Lowering T4 moderately and incorporating T3 can finally give many patients access to euthyroid T3 tissue supply.

Because of ubiquitination, your T4 will convert more efficiently to T3 via D2 when T4 is somewhat lower in reference. (Optimizing D1 and preventing D3 excess are for other posts.)

So be nice to your D2 enzyme, and stop overloading it into ubiquitination. Help your D2 give you as much T3 out of your T4 as it can!


1. Werneck de Castro, J. P., Fonseca, T. L., Ueta, C. B., & McAninch, E. A. (2015). Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. Journal of Clinical Investigation, 125(2), 769–781. https://doi.org/10.1172/JCI77588

2. Pilo, A., Iervasi, G., Vitek, F., Ferdeghini, M., Cazzuola, F., & Bianchi, R. (1990). Thyroidal and peripheral production of 3,5,3’-triiodothyronine in humans by multicompartmental analysis. The American Journal of Physiology, 258(4 Pt 1), E715-726. https://doi.org/10.1152/ajpendo.1990.258.4.E715

3. Abdalla, S. M., & Bianco, A. C. (2014). Defending plasma T3 is a biological priority. Clinical Endocrinology, 81(5), 633–641. https://doi.org/10.1111/cen.12538

4. Larisch, R., Midgley, J. E. M., Dietrich, J. W., & Hoermann, R. (2018). Symptomatic Relief is Related to Serum Free Triiodothyronine Concentrations during Follow-up in Levothyroxine-Treated Patients with Differentiated Thyroid Cancer. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 126(9), 546–552. https://doi.org/10.1055/s-0043-125064

5. Carlé, A., Faber, J., Steffensen, R., Laurberg, P., & Nygaard, B. (2017). Hypothyroid Patients Encoding Combined MCT10 and DIO2 Gene Polymorphisms May Prefer L-T3 + L-T4 Combination Treatment – Data Using a Blind, Randomized, Clinical Study. European Thyroid Journal, 6(3), 143–151. https://doi.org/10.1159/000469709

Categories: Deiodinase Type 2, Deiodinases, FT3:FT4 ratio, T4-monotherapy

13 replies


  1. Dosing by TSH results in FT3 inequity and health discrimination – Canadian Thyroid Patients Campaign
  2. The pituitary response is abnormal. Stop TSH worship. – Canadian Thyroid Patients Campaign
  3. As of 2019, still no proof that low TSH causes harm to bones – Canadian Thyroid Patients Campaign
  4. Several fallacies in the TSH-T4 paradigm of thyroid therapy – Canadian Thyroid Patients Campaign
  5. Thyroid therapies: What my life is like in the T3-monotherapy wheelchair – Canadian Thyroid Patients Campaign
  6. Thyroid therapies: Managing the T3-T4 combo “walker” – Canadian Thyroid Patients Campaign
  7. Targeting TSH? It’s not as specific or as sensitive as people claim. – Thyroid Patients Canada
  8. Thank you, good thyroid doctors! – Thyroid Patients Canada
  9. The TSH-T3 disjoint in thyroid therapy – Thyroid Patients Canada
  10. Visualizing thyroid hormone activity in cells: T3 and RT3 in context – Thyroid Patients Canada
  11. Deiodinase Type 3 plays a T3-blocking function – Thyroid Patients Canada
  12. Principles & Practical tips for Reverse T3, FT3, FT4 – Thyroid Patients Canada
  13. What can prevent T3 from getting into thyroid receptors? – Thyroid Patients Canada

Leave a public reply here, on our website.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: